
1. Schooled in Scale
Viewed from billions of kilometers away in space, Earth appears as a single “Pale Blue Dot,” in the immortalized 
phrase of Carl Sagan bestowed upon the image taken by the Voyager 1 space probe. Coming closer, though, a 
sharper image emerges (Figure 1).

One finds structure to that dot, shades of green and brown continents, a dark ocean, a bright cryosphere, and a 
hazy, thin blue atmosphere. Zooming further in, those components break into patterns of mountains and rivers, 
seas and bays, forests and grasslands, layers, and cloud decks. And getting closer, one finds each component has 
oscillations and variations of branches and rivulets, canyons and plateaus, currents and coastlines. These objects 
keep revealing more structure in finer, often self-similar form, like Mandelbrot's fractals, down to eddies and 
organisms, and further into leaves, cells, enzymes, molecules, and atoms.

And then, if you wait seconds, days, decades, or eons, landscape patterns change. Bigger things typically take 
longer than smaller ones. As a result, the pattern changes—sometimes occurring slowly and subtly, ebbing and 
flowing in an oscillatory manner, or they can occur quickly and abruptly, morphing into a new state of order.

Each element and its dynamics come with variations in space and time that can be encompassed by the concept of 
scale. Earth systems science is preoccupied with the interactions of these elements, which cannot be understood 
without a stipulation of the scales of interest (Ge et al., 2019). The most straightforward of these interactions are 
ones where common processes at all scales can be defined by a single relationship, often a power-law, leading 
to the concept of scale invariance (Paleri et al., 2022). The most interesting interactions are the ones that break 
those rules and lead to “upscale” and “downscale” behavior, whereby processes at one scale determine the shape 
and function of another scale. These are most common at the intersections of biology, hydrology, geology, and 
meteorology, often within what is termed the “critical zone.” This interlocking also harkens to the origins of 
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our discipline in Alexander von Humboldt's conception in his lithograph “Naturgemälde” which depicted the 
multi-faceted scales of the “web of life” (Wulf, 2015).

It should be no surprise then that the interactions of the land surface, its organisms and their environment, with the 
overlying atmosphere would be shaped by scale. Biology tends to scale up from genes and cells to biomes, while 
the atmosphere derives its scale from large scale energy imbalance down to turbulent dissipation (Desai, 2022). 
This fundamental clash frustrates our ability to measure and simulate those interactions and forecast how they 
will change. Not surprisingly, the scale challenge captures the heart of many experiments—in the field as well as 
in computer-based models.

Thus, while we present here a special collection on Advances in Scaling and Modeling of Land-Atmosphere 
Interaction at https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-8961.ADVSCLMDL, the 
concerns of the papers within are in many respects quite ordinary and ubiquitous.

There is a long history of studies, going back many decades, on how scales of the land surface influence and 
are influenced by atmospheric scales. Early model simulations found the importance of soil moisture, albedo, 
roughness, and heating on the atmosphere (Betts et al., 1996; Charney, 1975; Garrat, 1993), while others laid out 
the role of vegetation and hydrology (Avissar, 1995; Blöschl & Sivapalan, 1995; Pielke et al., 1998), and some 
tackled the challenge in models (Giorgi & Avissar, 1997; van Heerwaarden et al., 2014).

Dickinson (1995) had already called out specific research needs for advances in coupling and scale representa-
tion. From that time onward, large cooperative field experiments have helped build the playing board on which 
much of our theories rest, including classic studies like BOREAS (Sellers et  al.,  1995) and LITFASS-2003 
(Beyrich et  al.,  2006) as well as more recent studies such as HiWATER-MUSOEXE (Wang et  al.,  2015), 
SCALE-X (Wolf et al., 2017), LAFE (Wulfmeyer et al., 2018), HI-SCALE (Fast et al., 2019), and CHEESE-
HEAD19 (Butterworth  et al., 2021). They have helped to advance observing techniques and analytical tools, 
fine-tune model parameters, and build long-lasting scientific communities. These studies help inform advances 
in multi-scale modeling such as seen in HydroBlocks (Chaney et al., 2016) or the Ecosystem Demography model 
(Longo et al., 2019).

2. A Scale for All Silos
For this collection, we ran an open solicitation for articles in JGR: Biogeosciences, JGR: Atmospheres, Journal 
of Advances in the Modeling of Earth Systems, and Earth & Space Science, with the specific goal of reaching 
a broad range of communities, many of whom have been making advances within their own disciplines (Desai, 
Butterworth, et al., 2021). By building a cross-journal collection, we sought to scale the barriers to our current 
understanding that are hampered by the “siloing” of our knowledge.

Figure 1. The Earth at three scales, as (a) a pale blue dot seen from Voyager 1 (source: NASA), (b) closer up from EPIC 
(source: NASA https://epic.gsfc.nasa.gov/), and (c) down to land cover seen over a 10 × 10 km area at 1 m resolution 
from first three principal components of a hyperspectral visible and near IR image over the CHEESEHEAD19 study area 
(Butterworth et al., 2021).

https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-8961.ADVSCLMDL
https://epic.gsfc.nasa.gov/
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Consider the example of specifying scales of land surface properties for modeling the atmospheric boundary 
layer, the lowest 1–2 km of the atmosphere, the part of earth's atmosphere most directly influenced by surface 
processes (Stull,  1988) and heterogeneity (Bou-Zeid et  al.,  2020). Under increasing surface heterogeneity, 
large-scale transport by atmospheric circulations becomes increasingly important (Morrison et al., 2021). It turns 
out fractal geometry has the answer for identifying those scales with lacunarity analysis (Allain & Cloitre, 1991), 
which has had a history of application in ecology (Plotnick et al., 1993), but not so much in atmospheric sciences.

Lacunarity helps specify the appropriate scale for spatial fields (Scott et al., 2022). Lacunarity profiles reveal the 
spatial variability of any given quantity at each spatial scale. When the profile asymptotes, it indicates that there 
are no spatial structures and changes happening at larger scales. A heterogeneity measure can then be obtained 
representing the integrated characteristic heterogeneity scale of the spatial structures in the domain, from zero 
being perfectly homogenous to one as perfectly heterogenous. Yet, these measures of scale are dependent on the 
domain and the resolution used to calculate them, and necessitate tailoring the question of scale to the scientific 
study. For example, consider thermal heterogeneity scales for five consecutive hours for land surface tempera-
ture distribution within a 30 × 30 km domain collected on 5 October 2019 in northern Wisconsin USA during 
the CHEESEHEAD19 field campaign (Figure 2). A time scale of an hour appears to be large enough for the 
surface heterogeneity to change notably from a rather heterogeneous distribution to a more homogenous one. 
This information can be coupled with spatially distributed measurements by multiple eddy covariance towers to 
test how these spatial scales influence transport processes and their impact on issues like eddy covariance energy 
imbalance (Wanner et al., 2022).

Land-atmosphere field experiments have continued to provide insight on scaling through advances in observ-
ing capability as noted in several papers in this collection. For example, from CHEESEHEAD19, Murphy 
et al. (2022) find canopy structural metrics do not linearly scale with spatial resolution, which influences how 
those metrics link to ecosystem functions through water-use and light-use efficiencies. Meanwhile, with a range 
of atmospheric profilers and surface radiation observations, Sedlar et al. (2022) show how atmospheric bound-
ary layer development is influenced by scales of cloud regimes and its imprint on turbulent fluxes. In the LAFE 
experiment in the Southern Great Plains, US, Späth et  al.  (2022) deployed a novel strategy for simultaneous 
measurements of atmospheric surface layer profiles of temperature, winds, and moisture to successfully infer 
regional-scale surface-atmosphere fluxes using scale-invariant theories such as Monin-Obhukov similarity rela-
tionships. Meanwhile, in the same region, during HI-SCALE, Sakaguchi et al. (2022) demonstrate how scales 
of land cover heterogeneity differ from those of soil moisture heterogeneity in developing modes and mesoscale 
patterns in surface energy balance.

Figure 2. Change in lacunarity of land surface temperature (y-axis) over a 5 hr period (color) as a function of spatial 
aggregation scale (x-axis), shows a rapid change in spatial scales over the course of a single morning.
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Longer-term and distributed observations also allow for investigation of scale. Young et al. (2022) noted how 
the sensitivity of evapotranspiration across a continent as observed in the Ameriflux network of eddy covari-
ance flux towers (Novick et al., 2018) scales primarily with plant lifecycle phenology in energy-limited regions, 
while water limitation dominates elsewhere. Yan et al. (2021) look further into spring plant phenology in China 
across a network of thousands of weather stations and find that large-scale atmospheric teleconnections such as 
the Atlantic Multidecadal Oscillation imprint themselves on the spring blooming times of individual organisms.

These spatial scaling analyses are complemented by those that focus more on the temporal dimension. Turner 
et al. (2021) noted substantial temporal lags in wetland methane fluxes in response to wetting changes while Yun 
et al. (2022) reported a reversing of carbon dioxide uptake to source observed from decadal flux measurements on 
the Tibetan Plateau arising from a trend of warming soil temperatures promoting high emissions events outside 
the growing season. A more novel temporal linkage is noted in Li et al. (2022) who found temporal oscillations of 
atmospheric pressure led to a pumping effect on atmospheric moisture in the vadose zone in soils.

For both space and time, a key effort in Earth systems science has been upscaling and downscaling observations 
from one scale to compare against another. Bottom-up approaches need to identify key space and time covariates 
and statistical approaches to fuse multiple measurements across scale. One approach to identify these for CO2 
fluxes used an artificial intelligence approach with pairs of eddy covariance sites at differing distances (Reed 
et al., 2021). Wu et al. (2022) evaluated bottom-up scaling across multiple products for global soil nitrous acid 
(HONO) emissions. Levy et  al.  (2022) reviewed the key challenges for upscaling when it comes to the UK 
greenhouse gas program and finds an essential role for uncertainty propagation, a factor also evaluated for gross 
primary productivity upscaling by Xie et al.  (2022). For comparing to top-down measurements, such as flux 
towers to satellites, source areas and (non-)linearities in downscaling need to be taken into account, whether that 
is for carbon emissions in a salt marsh (Hill & Vargas, 2022), hotspots of methane in eddy covariance flux tower 
footprints (Rey-Sanchez et al., 2022), or land surface temperature over heterogeneous landscapes (Desai, Khan, 
et al., 2021).

The importance of how these scale effects then play out on the planet has often been tested with coupled Earth 
system models. In some cases, like in Clifton and Patton (2021), the scale effect is minimal, as they showed that 
scale dependency of organized turbulence doesn't have a strong impact on scales of ozone removal by deposition 
to plants. While in others, like Simon et al. (2021), land surface variation scales promoted an increase in turbulent 
kinetic energy convection and rainfall. In similar respects, Cheng et al.  (2022) simulated the role of  topogra-
phy driving low-level wind convergence, and thereby enhancing heat fluxes and convection. Atmospheric trans-
port and coupling to surface and hydrological processes also played a role in dust transport and emission (Han 
et al., 2022) and influencing stream outflow (Getirana et al., 2021).

3. Scaling a Mountain
So, how can these findings be put to work for improving our models and forecasts of land-atmosphere processes? 
Several papers in the collection go into specific modeling advances to improve scale-relevant processes. These 
include work on improving plant water cycling with hydrodynamic approaches (Bohrer & Missik, 2022) and 
advancing stomatal conductance formulations (Otu-Larbi et al., 2021). New approaches to move beyond plant 
functional types to detailed species and land use delineations were found to be important for air quality modeling 
(Luttkus et al., 2022), biogenic volatile organic compound crop emission models (Havermann et al., 2022), and 
for site-level data assimilation in ecosystem models (Jung & Hararuk, 2022). A particularly novel advance by 
Berkelhammer et al.  (2022) involved incorporating the multidimensional scale of root foraging for water and 
nutrients in space and time across the soil continuum, a process whose inclusion improves simulations of plant 
drought recovery.

With additional manuscripts in review for the collection at the time of submission of this introduction, there are 
bound to be more intriguing findings and modeling advances. To push the field forward, a recent workshop iden-
tified needs for cross-disciplinary training, funding, and observations, particularly of atmosphere boundary-layer 
dynamics and entire soil profiles (Beamesderfer et al., 2022). Hopefully some of those calls will be heeded. Here, 
we wish for readers to find a rich array of findings, reviews, and concepts that when placed on the scale, weigh 
toward the side of knowledge gained to incorporate into your own work. For those that seek to do so, please look 
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far and wide, and near and deep, brushing off the scales of works past, so that our collective wisdom is increased, 
more interconnected, and increasingly scale-aware.

Data Availability Statement
Land surface temperature data for the example in Figure 2 is found at https://doi.org/10.26023/5J4W-8XPH-250N.
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